Assessment of water suitability for construction purposes

part 1

1) Issues to be prepared:

Mixing water, pH of solutions, water analysis.

2) Literature:

– E. Ozimina, K. Sułko "*Laboratorium z chemii budowlanej*", Wyd. Politechniki Świętokrzyskie w Kielcach, 2010 r.
– L. Czarnecki, T. Broniewski, O. Henning, "*Chemia w Budownictwie*", Arkady, Warszawa, 1996 r.

– Philip Maslow "Chemical Materials for Construction: Handbook of Chemicals for Concrete, Flooring, Caulks and Sealants, Epoxies, Latex Emulsions, Adhesives, Roofing, Waterproofing, Technical Coatings and Heavy Construction Specialties" McGraw-Hill, University of California, 1982.

– Other manuals and scripts covering the topics from p. 1.

3) Apparatus:

pH meter with indicator electrode

4) Laboratory equipment:

Beakers (50 or 100 cm³ capacity), test tubes, 2 conical flasks with a capacity of 250cc, pipettes (10cm³ or 5cm³), baguettes, spatula, wash bottle, water bath

5) Reagents:

0.5M and 0.01 M AgNO3 solution, 5% K₂CrO₄ solution, 1M and 3% NaOH solution, 0.1M and 10% HCl solution, 10% BaCl₂ solution, 5% α -naphthol solution, concentrated H₂SO₄, 1M FeSO4 solution, 1M KI solution, paper saturated with (CH₃COO)₂Pb solution.

6) **Performing the exercise**

- a) Using the pH meter in exercise 1, measure the pH value of the mixing water obtained for analysis.
- b) Detergents measure approx. 2 cm³ of water in a test tube, close the stopper and shake vigorously. Leave for approx. 2 minutes. characterize (absence or presence of foam).
- c) Color the water should be colorless or pale yellow.
- d) Humic substances place 5 cm³ of water in a test tube and add 5 cm³ of a 3% NaOH solution, shake and leave for one hour, then observe the color of the sample.
- e) Odor of water and presence of hydrogen sulphide check for the presence of an odor other than the smell of clean water. Check the presence of hydrogen sulphide: pour 5 cm³ of water into a test tube, add a few drops of concentrated HCl, cover with a paper with a saturated solution (CH₃COO)₂Pb and heat slightly. The blackening of the tissue paper indicates the presence of hydrogen sulphide at a concentration above 20 mg / dm³. No blackening means no hydrogen sulphide in the tested sample.
- f) Chloride ion content determined by titration of a water sample with AgNO₃ solution in the presence of K₂CrO₄. Measure 100 cm³ of water into a 250 cm³ conical flask. Add 1 cm³ of 5% K₂CrO₄ solution and titrate with 0.01 M AgNO₃ solution until red-brown color appears. Calculate the chloride ion content using the formula:

$$m_{Cl} = V \cdot C_m \cdot 354,4 \text{ mg}$$

where: V - volume of AgNO₃ solution used for titration [cm³] Cm - concentration of AgNO₃ solution, 0.01 mol / dm³

g) Content of sulphate ions - pour into a test tube 5 cm³ of water (if it is cloudy, filter it), 2.5 cm³ of a 10% HCl solution

and 2.5 cm^3 of a 10% BaCl₂ solution and then start the timer. The content of sulphate ions is determined depending on the rate of formation of the barium sulphate (VI) precipitate (BaSO₄), using Table 1.

- h) Sugar content measure 50 cm³ of water into a 100 cm³ beaker, add 1 cm³ of 1 M HCl solution, cover with a watch glass and heat for 25 minutes in a water bath with boiling water. After cooling, rinse the clean test tube with water contained in the beaker several times. For the study the water remaining on the walls of the tube is used. To a test tube moistened with test water, add 3 drops of 5% alcoholic naphthol solution and 1 cm³ of concentrated sulfuric acid (**with glasses, in a hood**). Mix the contents of the test tube and observe the color. Determine the approximate sugar content according to Table 2.
- i) Phosphate ion content place 2 cm³ of water in a test tube, add 2 cm³ of 0.5 molar AgNO₃ solution. The formation of a yellow precipitate of silver phosphate proves the content of phosphate ions (converted into P_2O_5) greater than 100 mg / dm³. The lack of sediment indicates that the content of phosphate ions in the tested water does not exceed 100 mg / dm³.
- j) Nitrate content put 5 cm³ of water in a test tube, add 1 cm³ of concentrated sulfuric acid (in glasses, in a hood) and 4 cm³ of 1 molar FeSO₄ solution. The formation of a brown sludge as a result of the formation of the Fe (NO)²⁺ ion indicates the content of nitrate ions greater than 500 mg / dm³. The lack of sediment indicates that the content of nitrate ions in the water does not exceed 500 mg / dm³.
- k) Lead content place 5 cm³ of water in a test tube, add 5 cm³ of 1M KI solution and shake. The formation of an abundant yellow precipitate of lead (II) iodide proves the content of lead ions higher than 100 mg / dm³. The lack of sediment indicates that the content of lead ions in the tested water does not exceed 100 mg / dm³. I) Zinc content place 5 cm³ of water in a test tube, add 5 cm³ of 1 M NaOH solution and shake. Formation of a white precipitate of zinc hydroxide proves the content of zinc ions higher than 100 mg / dm³. The lack of sediment indicates that the content of zinc ions higher than 100 mg / dm³.
- Compare the results of the determinations with the requirements of the standard, provided in Table 3, and present them in the manner provided in Table 4. Assess the suitability of water for construction purposes.

Fluid turbidity after time [s]	Content of sulphate ions [mg / dm ³]	
0 (abundant sediment)	Above 500	
1 (turbidity)	500	
5	100	
20	50	
60	25	

Table 1. The content of sulphate ions (SO₂) depending on the time of appearance of the turbidity

 Table 2. Assessment of sugar content

The color of the solution Sugar content $[mg / dm^3]$	
Violet-red emerging immediately	500
Reddish pink after a few seconds	100
Light pink after a few minutes	5

Assessment of water suitability for construction purposes

part 2

Initial assessment of make-up water					
Lp.	Parameter	Equirements			
1.	Oils and fats	No more than visible traces			
2.	Detergents	Any foam should disappear within 2 minutes			
3.	Color	Pale yellow or lighter			
4.	Smell	No hydrogen sulfide odor			
5.	Suspensions	Not more than 4 cm ³ of sediment in 80 cm ³ of sample			
6.	Acids	pH> 4			
7.	Humic substances	The color is yellowish brown or lighter when NaOH is added			
Chemical properties					
Lp.	Parameter	Maximum content in mixing water [mg / dm ³]			
8.	Chlorides (Cl ⁻)	500 - prestressed concrete or slurry			
		1000 - concrete containing reinforcement or metal elements			
		4500 - concrete containing no reinforcement or metal elements			
9.	Sulphates (SO ₄) ²⁻	2000			
10.	Alkali (as Na ₂ O)	1500			
11.	Sugars	100			
12.	Phosphates (as P ₂ O ₅)	100			
13.	Nitrates (NO ₃)	500			
14.	Lead (Pb^{2+})	100			
15.	Zinc (Zn^{2+})	100			

Table 3. Requirements for mixing water for concretes

Lp.	Substance	Requirement	Test result	Assessment (+/-)		
1.	Oils and fats					
2.	Detergents					
3.	Color					
4.	Suspensions					
5.	Odor / presence of hydrogen sulfide					
6.	Acids (pH)					
7.	Humic substances					
8.	Chlorides					
9.	Sulfur					
10.	Sugars					
11.	Phosphates					
12.	Nitrates					
13.	Lead					
14.	Zinc					
Water s	Water suitability assessment					

Table 4. Water test results and evaluation of its suitability as make-up water