Complexation and precipitation reactions

1. Evaluation of the complexation reaction based on the change in colour. Complexes and acidity.

- **1.1.** Add a few drops of Fe^{3+} solution ions to a test tube containing several drops of NH₄SCN. Then add a few drops of NH₄F solution. Discoloration of the solution indicates the complexation of Fe^{3+} ions by fluorides. Then add cautiously of the solution of concentrated H₂SO₄, until the solution becomes red again. It indicates the presence of the Fe^{3+} complex in the thiocyanate solution.
- **1.2.** Add a few drops of 2 M NH₃ solution to the solution containing Cu²⁺ ions. The dark blue colour of the solution indicates the presence of the copper-ammonia complex. Then carefully add 2 M HCl dropwise and observing the color change of the solution.
- **1.3.** Add a few drops of 2 M NH₃ solution to the solution containing Ni²⁺ ions. The blue colour of the solution indicates the presence of the nickel-ammonia complex. Then carefully add 2 M HCl dropwise and observing the colour change of the solution.

Compilation of the results:

 \checkmark Write complexation reactions and fill in the table below.

No.	Me^{n+}	Complex formula	Colour
1			
2			
3			

2. Sensitivity of the complexation reaction

First step. Prepare a series of Fe^{3+} solutions at concentrations of 10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} and 10^{-6} mol/dm³ using successive dilutions method. Prepare 8 cm³ of each solution. Then add 1 cm³ of NH₄SCN solution and 1 cm³ of concentrated HCl to each test tube and shake thoroughly (iron standard solutions were obtained).

Second step. Add 1 cm³ of NH₄SCN solution and 1 cm³ of concentrated HCl to 8 cm³ of tap water.

Compilation of the results:

✓ Based on the observation of the colour of iron standard solutions obtained and the colour of tap water answer the question: how much iron (μ g) is in a glass of tea (250 cm³)?

3. Precipitation reactions

3.1. Add approximately 1 cm^3 of AgNO₃ into five test tubes. Then:

Add a few drops of HCl to the first test tube.

Add a few drops of NaOH to the second test tube.

Add a few drops of KBr to the third test tube.

Add a few drops of KI to the fourth test tube.

Add a few drops of K_2CrO_4 to the fifth test tube.

Note the colors of the precipitates.

- **3.2.** Add approximately 1 cm³ of Pb(NO₃)₂ into the test tube and then add a few drops of KI. A yellow precipitate of PbI₂ will form. Add water and heat the mixture the precipitate will dissolve. Cool the test tube with the lead iodide in a beaker of cold water. After cooling down, PbI₂ was again released as gold plates or gold glitter.
- **3.3.** Amphotericity and precipitation reactions. Add a few drops of Al³⁺ ion solution to the test tube. Then add dropwise a solution of 0.1 M NaOH. Then divide precipitate into two test tubes. In first test tube dissolve the precipitate by adding further portions of 0.1 M NaOH, in second test tube dissolve the precipitate by adding 2 M HCl.

Optional repeat the experiment for the following cations: Zn^{2+} , Pb^{2+} .

Compilation of the results:

- ✓ Write precipitation reactions,
- \checkmark describe the phenomena occurring during the experiments in point 3.3.

4. The scope of the material

- \Box Structure of the coordination compounds,
- \Box role of ligands and metal ions in the formation of complexes,
- □ nomenclature of chemical complexes,
- □ solubility equilibrium and solubility (Ks and s),
- □ salt effect, common ion effect,
- □ amphotericity and precipitation reactions.

5. Literature

- M. D. Joesten, J. L. Wood, World of Chemistry, second edition, Thomson, USA 1996
- G. Charlot, Quantitative inorganic analysis, John Wiley & Sons inc., London 1954
- (https://archive.org/details/in.ernet.dli.2015.151602)
- D. W. Oxtoby, N. H. Nachtrieb, Principles of modern Chemistry, Saunders College Publishing, USA 1996
- M. Weller, T. Overton, J. Rourke, F. Armstrong, Inorganic chemistry, Oxford University Press, 2018
- C. E. Housecroft and A. G. Sharpe, Inorganic chemistry, Pearson, 2018